Proteins in Pre-Historic Ostrich Eggshells Discovered

Admin | Published 2016-10-02 10:30
Rubbles of earliest ostrich eggshells are lavish in Africa, and frequently found at paleontological and archaeological sites. They were utilized by the first modern humans for materials to create jewelry, art, and for practically carrying water. The thick shell makes it advantageous when used as head gear for protection. Recent new study published proposes that endurance of protein fragments within the pre-historic eggshell could shed light on genetic data almost 50 times earlier than any DNA on record. The authors of the study tracked and analyzed egg fossils coming from archaeological sites in South Africa and Tanzania, where supposedly proteins and DNA should not survive the extreme conditions, as reported by Sci-News.

Sci-News.com

“Twenty-four eggshell samples were sourced from well-dated sites in South Africa and Tanzania: Elands Bay Cave (300-16,000 years), Pinnacle Point Caves (50,000-150,000 years), Wonderwerk Cave (one million years), Olduvai Gorge(1.34 million years) and Laetoli (2.6-4.3 million years),” they said. The team speculated that proteins might survive better if they were stuck onto solid surfaces. “Evidence suggested that it was the more fluid, unstable, region of the protein that promoted and regulated mineral growth in the shell, but it was also less likely to survive over time and the intense heat of the African climate,” said study lead author Dr. Beatrice Demarchi, from the University of York, UK. “As we examined older and older eggshells, we could see that this assumption was surprisingly wrong, as it was in fact the unstable regions that survived the best. They were able to bind more strongly to the eggshell, allowing it be preserved in time.” “To date, DNA analysis from frozen sediments has been able to reach back to about 700,000 years ago, but human evolution left most of its traces in Africa and the higher temperature there takes its toll on DNA preservation,” said senior author Prof. Matthew Collins, also from the University of York. “We had known for many years that proteins could give more clues into the past, but when we looked at protein decay in eggshells, it gave us unusual results when compared to other fossil materials and, until now, we have not really known why.” “Ancient proteins derived from the enamel of fossil teeth have the potential to yield important clues to the evolutionary relationships, species identity, sex, and migration patterns of early human ancestors,” said co-author Prof. Terry Harrison, of New York University. “Remarkably, the oldest eggshell in the study – from the famous 3.8 million year-old site of Laetoli in Tanzania – a region of the protein was still there, giving us a unique insight into what to look for when analyzing fossils of this kind,” said co-author Dr. Colin Freeman, from the University of Sheffield, UK. “Now that we know minerals can trap and preserve proteins in this way, we can be much more targeted in our study of ancient remains.”
Another separate finding from the team produced ancient proteins coming from a 1.7-million-year-old tooth of extinct mammals such as horses, rhinos, and deer dug from the Dmanisi site in Georgia, the oldest site outside the borders of Africa containing the corpses of human ancestors.  
“These findings open up the possibility of recovering remnants of ancient proteins from the earliest human fossils,” Prof. Harrison said.
 
Hey! Where are you going?? Subscribe!

Get weekly science updates in your inbox!